38 research outputs found

    Greed is Fine: on Finding Sparse Zeros of Hilbert Operators

    Get PDF
    We propose an generalization of the classical Orthogonal Matching Pursuit (OMP) algorithm for finding sparse zeros of Hilbert operator. First we introduce a new condition called the restricted diagonal deviation property which allow us to analysis of the consistency of the estimated support and vector. Secondly when using a perturbed version of the operator, we show that a partial recovery of the support is possible and remain possible even if some of the steps of the algorithm are inexact. Finally we discuss about the links between recent works on other version of OMP

    Linear inverse problems with noise: primal and primal-dual splitting

    Get PDF
    In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by noise. A proper data fidelity term (log-likelihood) is introduced to reflect the statistics of the noise (e.g. Gaussian, Poisson). On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution, inpainting and denoising with some comparison to prior methods are also reported

    A proximal iteration for deconvolving Poisson noisy images using sparse representations

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transforms. Our key contributions are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a {\it non-linear} degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. â„“1\ell_1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Finally, a GCV-based model selection procedure is proposed to objectively select the regularization parameter. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications with Poisson noise such as astronomy and microscopy

    Data augmentation for galaxy density map reconstruction

    Get PDF
    The matter density is an important knowledge for today cosmology as many phenomena are linked to matter fluctuations. However, this density is not directly available, but estimated through lensing maps or galaxy surveys. In this article, we focus on galaxy surveys which are incomplete and noisy observations of the galaxy density. Incomplete, as part of the sky is unobserved or unreliable. Noisy as they are count maps degraded by Poisson noise. Using a data augmentation method, we propose a two-step method for recovering the density map, one step for inferring missing data and one for estimating of the density. The results show that the missing areas are efficiently inferred and the statistical properties of the maps are very well preserved

    Inverse Problems with Poisson noise: Primal and Primal-Dual Splitting

    Get PDF
    In this paper, we propose two algorithms for solving linear inverse problems when the observations are corrupted by Poisson noise. A proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms. Piecing together the data fidelity and the prior terms, the solution to the inverse problem is cast as the minimization of a non-smooth convex functional. We establish the well-posedness of the optimization problem, characterize the corresponding minimizers, and solve it by means of primal and primal-dual proximal splitting algorithms originating from the field of non-smooth convex optimization theory. Experimental results on deconvolution and comparison to prior methods are also reported

    Deconvolution under Poisson noise using exact data fidelity and synthesis or analysis sparsity priors

    Get PDF
    In this paper, we propose a Bayesian MAP estimator for solving the deconvolution problems when the observations are corrupted by Poisson noise. Towards this goal, a proper data fidelity term (log-likelihood) is introduced to reflect the Poisson statistics of the noise. On the other hand, as a prior, the images to restore are assumed to be positive and sparsely represented in a dictionary of waveforms such as wavelets or curvelets. Both analysis and synthesis-type sparsity priors are considered. Piecing together the data fidelity and the prior terms, the deconvolution problem boils down to the minimization of non-smooth convex functionals (for each prior). We establish the well-posedness of each optimization problem, characterize the corresponding minimizers, and solve them by means of proximal splitting algorithms originating from the realm of non-smooth convex optimization theory. Experimental results are conducted to demonstrate the potential applicability of the proposed algorithms to astronomical imaging datasets

    Deconvolution of confocal microscopy images using proximal iteration and sparse representations

    Get PDF
    We propose a deconvolution algorithm for images blurred and degraded by a Poisson noise. The algorithm uses a fast proximal backward-forward splitting iteration. This iteration minimizes an energy which combines a \textit{non-linear} data fidelity term, adapted to Poisson noise, and a non-smooth sparsity-promoting regularization (e.g â„“1\ell_1-norm) over the image representation coefficients in some dictionary of transforms (e.g. wavelets, curvelets). Our results on simulated microscopy images of neurons and cells are confronted to some state-of-the-art algorithms. They show that our approach is very competitive, and as expected, the importance of the non-linearity due to Poisson noise is more salient at low and medium intensities. Finally an experiment on real fluorescent confocal microscopy data is reported

    A greedy approach to sparse poisson denoising

    No full text
    International audienceIn this paper we propose a greedy method combined with the Moreau-Yosida regularization of the Poisson likelihood in order to restore images corrupted by Poisson noise. The regularization provides us with a data fidelity term with nice properties which we minimize under sparsity constraints. To do so, we use a greedy method based on a generalization of the well-known CoSaMP algorithm. We introduce a new convergence analysis of the algorithm which extends it use outside of the usual scope of convex functions. We provide numerical experiments which show the soundness of the method compared to the convex 1 -norm relaxation of the problem

    Generalized Subspace Pursuit and an application to sparse Poisson denoising

    No full text
    International audienceWe present a generalization of Subspace Pursuit, which seeks the k-sparse vector that minimizes a generic cost function. We introduce the Restricted Diagonal Property, which much like RIP in the classical setting, enables to control the convergence of Generalized Subspace Pursuit (GSP). To tackle the problem of Poisson denoising, we propose to use GSP together with the Moreau-Yosida approximation of the Poisson likelihood. Experiments were conducted on synthetic, exact sparse and natural images corrupted by Poisson noise. We study the influence of the different parameters and show that our approach performs better than Subspace Pursuit or l1-relaxed methods and compares favorably to state-of-art methods

    Image Deconvolution Under Poisson Noise Using Sparse Representations and Proximal Thresholding Iteration

    Get PDF
    We propose an image deconvolution algorithm when the data is contaminated by Poisson noise. The image to restore is assumed to be sparsely represented in a dictionary of waveforms such as the wavelet or curvelet transform. Our key innovations are: First, we handle the Poisson noise properly by using the Anscombe variance stabilizing transform leading to a non-linear degradation equation with additive Gaussian noise. Second, the deconvolution problem is formulated as the minimization of a convex functional with a data-fidelity term reflecting the noise properties, and a non-smooth sparsity-promoting penalties over the image representation coefficients (e.g. l1-norm). Third, a fast iterative backward-forward splitting algorithm is proposed to solve the minimization problem. We derive existence and uniqueness conditions of the solution, and establish convergence of the iterative algorithm. Experimental results are carried out to show the striking benefits gained from taking into account the Poisson statistics of the noise. These results also suggest that using sparse-domain regularization may be tractable in many deconvolution applications, e.g. astronomy or microscopy
    corecore